\(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [1052]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 350 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {(4 b B-a C) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b d \sqrt {a+b \sec (c+d x)}}+\frac {\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b^2 d \sqrt {a+b \sec (c+d x)}}-\frac {(4 b B-3 a C) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 b^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d} \]

[Out]

1/4*(4*B*b-C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))
^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b/d/(a+b*sec(d*x+c))^(1/2)+1/4*(8*A*b^2-4*B*a*b+3*C*a^
2+4*C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(
1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b^2/d/(a+b*sec(d*x+c))^(1/2)+1/2*C*sec(d*x+c)^(3/2)*sin(
d*x+c)*(a+b*sec(d*x+c))^(1/2)/b/d-1/4*(4*B*b-3*C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(
sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/b^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*
x+c)^(1/2)+1/4*(4*B*b-3*C*a)*sin(d*x+c)*sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/b^2/d

Rubi [A] (verified)

Time = 1.33 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {4187, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {\sqrt {\sec (c+d x)} \left (3 a^2 C-4 a b B+8 A b^2+4 b^2 C\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 b^2 d \sqrt {a+b \sec (c+d x)}}+\frac {(4 b B-3 a C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{4 b^2 d}-\frac {(4 b B-3 a C) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 b^2 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {(4 b B-a C) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 b d \sqrt {a+b \sec (c+d x)}}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}{2 b d} \]

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((4*b*B - a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(4
*b*d*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 - 4*a*b*B + 3*a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*E
llipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(4*b^2*d*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B - 3*
a*C)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b
)]*Sqrt[Sec[c + d*x]]) + ((4*b*B - 3*a*C)*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b^2*d)
+ (C*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*b*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4187

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(
d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a
*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a C}{2}+b (2 A+C) \sec (c+d x)+\frac {1}{2} (4 b B-3 a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 b} \\ & = \frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {-\frac {1}{4} a (4 b B-3 a C)+\frac {1}{2} a b C \sec (c+d x)+\frac {1}{4} \left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b^2} \\ & = \frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {-\frac {1}{4} a (4 b B-3 a C)+\frac {1}{2} a b C \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b^2}+\frac {\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 b^2} \\ & = \frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}-\frac {(4 b B-3 a C) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{8 b^2}+\frac {(4 b B-a C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 b}+\frac {\left (\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 b^2 \sqrt {a+b \sec (c+d x)}} \\ & = \frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\left ((4 b B-a C) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 b \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 b^2 \sqrt {a+b \sec (c+d x)}}-\frac {\left ((4 b B-3 a C) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{8 b^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b^2 d \sqrt {a+b \sec (c+d x)}}+\frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d}+\frac {\left ((4 b B-a C) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 b \sqrt {a+b \sec (c+d x)}}-\frac {\left ((4 b B-3 a C) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{8 b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {(4 b B-a C) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b d \sqrt {a+b \sec (c+d x)}}+\frac {\left (8 A b^2-4 a b B+3 a^2 C+4 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 b^2 d \sqrt {a+b \sec (c+d x)}}-\frac {(4 b B-3 a C) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 b^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {(4 b B-3 a C) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 b^2 d}+\frac {C \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 b d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.01 (sec) , antiderivative size = 690, normalized size of antiderivative = 1.97 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {\sqrt {b+a \cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {8 a b C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}+\frac {2 \left (16 A b^2-12 a b B+9 a^2 C+8 b^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}+\frac {2 i \left (-4 a b B+3 a^2 C\right ) \sqrt {\frac {a-a \cos (c+d x)}{a+b}} \sqrt {\frac {a+a \cos (c+d x)}{a-b}} \cos (2 (c+d x)) \left (-2 b (a+b) E\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )+a \operatorname {EllipticPi}\left (1-\frac {a}{b},i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )\right )\right ) \sin (c+d x)}{\sqrt {\frac {1}{a-b}} b \sqrt {1-\cos ^2(c+d x)} \sqrt {\frac {a^2-a^2 \cos ^2(c+d x)}{a^2}} \left (-a^2+2 b^2-4 b (b+a \cos (c+d x))+2 (b+a \cos (c+d x))^2\right )}\right )}{8 b^2 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}+\frac {(b+a \cos (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\sec (c+d x) (4 b B \sin (c+d x)-3 a C \sin (c+d x))}{2 b^2}+\frac {C \sec (c+d x) \tan (c+d x)}{b}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[b + a*Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((8*a*b*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]
*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*x]] + (2*(16*A*b^2 - 12*a*b*B + 9*a^2*C + 8*b^2*C
)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*x]] + ((2
*I)*(-4*a*b*B + 3*a^2*C)*Sqrt[(a - a*Cos[c + d*x])/(a + b)]*Sqrt[(a + a*Cos[c + d*x])/(a - b)]*Cos[2*(c + d*x)
]*(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*E
llipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*A
rcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)]))*Sin[c + d*x])/(Sqrt[(a - b)^(-1)]*b*S
qrt[1 - Cos[c + d*x]^2]*Sqrt[(a^2 - a^2*Cos[c + d*x]^2)/a^2]*(-a^2 + 2*b^2 - 4*b*(b + a*Cos[c + d*x]) + 2*(b +
 a*Cos[c + d*x])^2))))/(8*b^2*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*Sqrt[a +
b*Sec[c + d*x]]) + ((b + a*Cos[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Sec[c + d*x]*(4*b*B*Sin[c +
 d*x] - 3*a*C*Sin[c + d*x]))/(2*b^2) + (C*Sec[c + d*x]*Tan[c + d*x])/b))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Co
s[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 14.02 (sec) , antiderivative size = 3835, normalized size of antiderivative = 10.96

method result size
parts \(\text {Expression too large to display}\) \(3835\)
default \(\text {Expression too large to display}\) \(4242\)

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*A/d/((a-b)/(a+b))^(1/2)*(EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))-2*Ell
ipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2)))*(a+b*sec(d*x+c))^(1/2
)*sec(d*x+c)^(3/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2/(b+a*cos(d*x+c))/(1/(1+cos(d*x
+c)))^(1/2)+B/d/((a-b)/(a+b))^(1/2)/b*sec(d*x+c)^(5/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(1+cos(d*x+c))*
(2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^5-2*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*
x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1
/2)*a*cos(d*x+c)^5-(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(
a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*cos(d*x+c)^5+(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/
2))*b*cos(d*x+c)^5+4*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+
a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^4-4*EllipticPi(((a-b)/(a+b))^(1/2)*(
-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^4-2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(
1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^4+2*EllipticE(((a-
b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(1+cos(d*x+c)))^(1/2)*b*cos(d*x+c)^4+2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b
))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^3-2*EllipticPi
(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)^3-EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+
c)),(-(a+b)/(a-b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c
)^3+EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(1+cos(d*x+c)))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*cos(d*x+c)^3+((a-b)/(a+b))^(1/2)*a*cos(d*x+c)^3*sin(d*x+c)+((a-b
)/(a+b))^(1/2)*b*sin(d*x+c)*cos(d*x+c)^2)-1/4*C/d/b^2/((a-b)/(a+b))^(1/2)*sec(d*x+c)^(7/2)*(a+b*sec(d*x+c))^(1
/2)/(b+a*cos(d*x+c))/(1+cos(d*x+c))*(-3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^4-6*EllipticPi(
((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^4-8*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(
d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^
(1/2)*b^2*cos(d*x+c)^4-2*((a-b)/(a+b))^(1/2)*b^2*cos(d*x+c)^2*sin(d*x+c)-4*EllipticF(((a-b)/(a+b))^(1/2)*(-cot
(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(
1/2)*a*b*cos(d*x+c)^5+6*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^5-2*EllipticF(((a-b)/(a+b))^(1/
2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*
x+c)))^(1/2)*a*b*cos(d*x+c)^4+((a-b)/(a+b))^(1/2)*a*b*cos(d*x+c)^3*sin(d*x+c)+12*EllipticF(((a-b)/(a+b))^(1/2)
*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+
c)))^(1/2)*a^2*cos(d*x+c)^5+8*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^5-6*EllipticE(((a-b)/(a+b
))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+
cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^5-12*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/(
(a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^5-
16*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^5+6*EllipticF(((a-b)/(a+b))^(1/2)*(-co
t(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^
(1/2)*a^2*cos(d*x+c)^4+4*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)
*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^4-3*EllipticE(((a-b)/(a+b))^(1
/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d
*x+c)))^(1/2)*a^2*cos(d*x+c)^6+6*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*
(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^6+4*EllipticF(((a-b)/(
a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/
(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^6-6*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I
/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)^
6-8*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*c
os(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^6-2*((a-b)/(a+b))^(1/2)*a*b*cos(d*x+c
)^4*sin(d*x+c)+3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^6-2*EllipticF(((a-b)/(a+b))^(1/2)*(-co
t(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^
(1/2)*a*b*cos(d*x+c)^6+3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)
*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^4-2*((a-b)/(a+b))^(1/2)*b^2*co
s(d*x+c)^3*sin(d*x+c)+3*((a-b)/(a+b))^(1/2)*a^2*cos(d*x+c)^4*sin(d*x+c))

Fricas [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(((1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2), x)